Skip to main content

Advertisement

Log in

Analysis of cultivable aerobic bacterial community composition and screening for facultative sulfate-reducing bacteria in marine corrosive steel

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Anaerobic, aerobic, and facultative bacteria are all present in corrosive environments. However, as previous studies to address corrosion in the marine environment have largely focused on anaerobic bacteria, limited attention has been paid to the composition and function of aerobic and facultative bacteria in this process. For analysis in this study, ten samples were collected from rust layers on steel plates that had been immersed in seawater for different periods (i.e., six months and eight years) at Sanya and Xiamen, China. The cultivable aerobic bacterial community structure as well as the number of sulfate-reducing bacteria (SRB) were analyzed in both cases, while the proportion of facultative SRB among the isolated aerobic bacteria in each sample was also evaluated using a novel approach. Bacterial abundance results show that the proportions are related to sea location and immersion time; abundances of culturable aerobic bacteria (CAB) and SRB from Sanya were greater in most corrosion samples than those from Xiamen, and abundances of both bacterial groups were greater in samples immersed for six months than for eight years. A total of 213 isolates were obtained from all samples in terms of CAB community composition, and a phylogenetic analysis revealed that the taxa comprised four phyla and 31 genera. Bacterial species composition is related to marine location; the results show that Firmicutes and Proteobacteria were the dominant phyla, accounting for 98.13% of the total, while Bacillus and Vibrio were the dominant genera, accounting for 53.06% of the total. An additional six facultative SRB strains were also screened from the isolates obtained and were found to encompass the genus Vibrio (four strains), Staphylococcus (one strain), and Photobacterium (one strain). It is noteworthy that mentions of Photobacterium species have so far been absent from the literature, both in terms of its membership of the SRB group and its relationship to corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alazard D, Badillo C, Fardeau M L, Cayol J L, Thomas P, Roldan T, Tholozan J L, Ollivier B. 2007. Tindallia texcoconensis, sp. nov. a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico. Extremophiles, 11 (1): 33–39.

    Article  Google Scholar 

  • Angell P, Urbanic K. 2000. Sulphate–reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corros. Sci., 42 (5): 897–912.

    Article  Google Scholar 

  • Ashassi–Sorkhabi H, Moradi–Haghighi M, Zarrini G. 2012. The effect of pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel. Mater. Sci. Eng.: C, 32 (2): 303–309.

    Article  Google Scholar 

  • Babul G P, Subramanyam P, Sreenivasulu B, Paramageetham Ch. 2014. Isolation and identification of sulfate reducing bacterial strains indigenous to sulphur rich barite mines. Int. J. Curr. Microbiol. Appl. Sci., 3 (7): 788–793.

    Google Scholar 

  • Beech I B, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol., 15 (3): 181–186.

    Article  Google Scholar 

  • Benbouzid–Rollet N D, Conte M, Guezennec J, Prieur D. 1991. Monitoring of a Vibrio natriegens and Desulfovibrio vulgaris marine aerobic biofilm on a stainless steel surface in a laboratory tubular flow system. J. Appl. Bacteriol., 71 (3): 244–251.

    Article  Google Scholar 

  • Bermont–Bouis D, Janvier M, Grimont P A D, Dupont I, Vallaeys T. 2007. Both sulfate–reducing bacteria and enterobacteriaceae take part in marine biocorrosion of carbon steel. J. Appl. Microbiol., 102 (1): 161–168.

    Article  Google Scholar 

  • Bolton N, Critchley M, Fabien R, Cromar N, Fallowfield H. 2010. Microbially influenced corrosion of galvanized steel pipes in aerobic water systems. J. Appl. Microbiol., 109 (1): 239–247.

    Google Scholar 

  • Bott T R. 1996. 96/03046–fouling of heat exchangers. Fuel Energ. Abstr., 37 (3): 211.

    Article  Google Scholar 

  • Boudaud N, Coton M, Coton E, Pineau S, Travert J, Amiel C. 2010. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena. J. Appl. Microbiol., 109 (1): 166–179.

    Google Scholar 

  • Çetin D, Bilgiç S, Donmez G. 2007. Biocorrosion of low alloy steel by Desulfotomaculum sp. and effect of biocides on corrosion control. ISIJ Int., 47 (7): 1 023–1 028.

    Article  Google Scholar 

  • Chen Y W. 2014. The study on diversity of bacterial community in inner rust layer of carbon steel immersed in Zhonggang marine water of Qingdao and electrically active of several bacteria. Ocean University China, Beijing, China. (in Chinese)

    Google Scholar 

  • Cheng S, Lau K T, Chen S G, Chang X T, Liu T, Yin S Y. 2010. Microscopical observation of the marine bacterium vibrio natriegeus growth on metallic corrosion. Mater. Manuf. Process., 25 (5): 293–297.

    Article  Google Scholar 

  • Dang H Y, Chen R P, Wang L, Shao S D, Dai L Q, Ye Y, Guo L Z, Huang G Q, Klotz M G. 2011. Molecular characterization of putative biocorroding microbiota with a novel niche detection of epsilon–and zetaproteobacteria in pacific ocean coastal seawaters. Environ. Microbiol., 13 (11): 3 059–3 074.

    Article  Google Scholar 

  • Dang H Y, Lovell C R. 2002a. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl. Environ. Microbiol., 68 (2): 496–504.

    Article  Google Scholar 

  • Dang H Y, Lovell C R. 2002b. Seasonal dynamics of particleassociated and free–living marine Proteobacteria in a salt marsh tidal creek as determined using fluorescence in situ hybridization. Environ. Microbiol., 4 (5): 287–295.

    Article  Google Scholar 

  • Dong Q, Shi H C, Liu Y C. 2017. Microbial character related sulfur cycle under dynamic environmental factors based on the microbial population analysis in sewerage system. Front. Microbiol., 8: 64.

    Google Scholar 

  • Dowling N J E, Guezennec J, Lemoine M L, Tunlid A, White D C. 1988. Analysis of carbon steels affected by bacteria using electrochemical impedance and direct current techniques. Corrosion, 44 (12): 869–874.

    Article  Google Scholar 

  • Du X Q, Duan J Z, Zhai X F, Luan X, Zhang J, Hou B R. 2013. Corrosion behavior of 316l stainless steel influenced by iron–reducing bacteria Shewanella algae biofilms. J. Chin. Soc. Corros. Protect., 33 (5): 363–370. (in Chinese with English abstract)

    Google Scholar 

  • Eduok U, Khaled M, Khalil A, Suleiman R, El Ali B. 2016. Probing the corrosion inhibiting role of a thermophilic bacillus licheniformis biofilm on steel in a saline axenic culture. RSC Adv., 6 (22): 18 246–18 256.

    Article  Google Scholar 

  • Gall J L. 1975. Bacteries sulfato–reductrices: enzymologie de la reduction dissimilative des sulfates. Plant and Soil, 43 (1–3): 115–124.

    Article  Google Scholar 

  • Garrity G M, Bell J A, Lilburn T G. 2004. Taxonomic outline of the prokaryotes. In: Garrity GM ed. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Springer, New York.

    Google Scholar 

  • Gibson G R. 1990. Physiology and ecology of the sulphatereducing bacteria. J. Appl. Bacteriol., 69 (6): 767–797.

    Article  Google Scholar 

  • Guo P, Yan M, Huang G Q, Du M. 2006. A study on microbiologically influenced corrosion of a carbon steel in seawater. Corros. Sci. Prot. Technol., 18 (6): 410–413. (in Chinese with English abstract)

    Google Scholar 

  • Holmes D E, Bond D R, O’Neil R A, Reimers C E, Tender L R, Lovley D R. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol., 48 (2): 178–190.

    Article  Google Scholar 

  • Holmström C, Kjelleberg S. 1999. Marine pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol., 30 (4): 285–293.

    Article  Google Scholar 

  • Iverson W P. 1966. Direct evidence for the cathodic depolarization theory of bacterial corrosion. Science, 151 (3713): 986–988.

    Article  Google Scholar 

  • Iverson W P. 1968. Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans. Nature, 217 (5135): 1 265–1 267.

    Article  Google Scholar 

  • Jones P R, Cottrell M T, Kirchman D L, Dexter S C. 2007. Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb. Ecol., 53 (1): 153–162.

    Article  Google Scholar 

  • King R A, Miller J D A. 1971. Corrosion by the sulphatereducing bacteria. Nature, 233 (5320): 491–492.

    Article  Google Scholar 

  • Kip N, van Veen J A. 2015. The dual role of microbes in corrosion. ISME J., 9 (3): 542–551.

    Article  Google Scholar 

  • Kirchman D L. 2002. The ecology of cytophaga–flavobacteria in aquatic environments. FEMS Microbiol. Ecol., 39 (2): 91–100.

    Google Scholar 

  • Lanneluc I, Langumier M, Sabot R, Jeannin M, Refait P, Sablé S. 2015. On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel. Int. Biodeter. Biodegr., 99 (1): 55–65.

    Article  Google Scholar 

  • Lee J W, Nam J H, Kim Y H, Lee K H, Lee D H. 2008. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol., 46 (2): 174–182.

    Article  Google Scholar 

  • Li H B, Zhou E Z, Zhang D W, Xu D K, Xia J, Yang C G, Feng H, Jiang Z H, Li X G, Gu T Y, Yang K. 2016. Microbiologically influenced corrosion of 2707 hyperduplex stainless steel by marine Pseudomonas aeruginosa biofilm. Sci. Rep., 6: 20 190.

    Article  Google Scholar 

  • Li K, Whitfield M, van Vliet K J. 2013. Beating the bugs: roles of microbial biofilms in corrosion. Corros. Rev., 31 (3–6): 73–84.

    Google Scholar 

  • Li X H, Duan J Z, Xiao H, Li Y Q, Liu H X, Guan F, Zhai X F. 2017. Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of illumina MiSeq sequencing. Front. Microbiol., 8: 1 737.

    Google Scholar 

  • Little B, Wagner P, Hart K, Ray R, Lavoie D, Nealson K, Aguilar C. 1997. The role of metal–reducing bacteria in microbiologically influenced corrosion. Corrosion, 97: 1–11.

    Google Scholar 

  • Liu X Y, Jensen P R, Workman M. 2012. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresource Technol., 104 (1): 579–586.

    Article  Google Scholar 

  • Liu Y J, Tian X P, Huang X F, Long L J, Zhang S. 2014. Diversity of cultivable bacteria isolated from marine sediment environments in South China Sea. Microbiol. China, 41 (4): 661–673. (in Chinese with English abstract)

    Google Scholar 

  • Lopes F A, Morin P, Oliveira R, Melo L F. 2006. Interaction of desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. J. Appl. Microbiol., 101 (5): 1 087–1 095.

    Article  Google Scholar 

  • Luan X, Duan J Z, Chen Z M. 2012. Diversity of bacterial community on the surface of Q235 Steel in temperate coastal marine waters. Period. Ocean Univ. China, 42 (S2): 107–115. (in Chinese with English abstract)

    Google Scholar 

  • Mansfeld F. 2007. The interaction of bacteria and metal surfaces. Electrochim. Acta, 52 (27): 7 670–7 680.

    Article  Google Scholar 

  • Marez A, Tellier E, Leclerc H. 1971. Sulfate reducing vibrios and biological corrosion. Anna. Inst. Pasteur. Lille., 22: 137–176.

    Google Scholar 

  • Marques J M, de Almeida F P, Lins U, Seldin L, Korenblum E. 2012. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor. World J. Microbiol. Biotechnol., 28 (6): 2 355–2 363.

    Article  Google Scholar 

  • McBeth J M, David E. 2016. In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron–oxidizing bacteria. Front. Microbiol., 7: 767.

    Article  Google Scholar 

  • Meng L, Liu H, Bao M T, Sun P Y. 2016. Microbial community structure shifts are associated with temperature, dispersants and nutrients in crude oil–contaminated seawaters. Mar. Pollut. Bull., 111 (1–2): 203–212.

    Article  Google Scholar 

  • Ministry of Chemical Industry of the People’s Republic of China. 1993. GB/T 14643.5–199. Industrial Circulating Cooling Water Sulfate–Reducing Bacteria–MPN Test. China Standards Press, Beijing. (in Chinese)

    Google Scholar 

  • Moi I M, Roslan N N, Leow A T C, Ali M S M, Rahman R N Z R, Rahimpour A, Sabri S. 2017. The biology and the importance of Photobacterium species. Appl. Microbiol. Biot., 101 (11): 4 371–4 385.

    Article  Google Scholar 

  • Moradi M, Song Z L, Tao X. 2015a. Introducing a novel bacterium, Vibrio neocaledonicus sp., with the highest corrosion inhibition efficiency. Electrochem. Commun., 51: 64–68.

    Article  Google Scholar 

  • Moradi M, Song Z L, Yang L J, Jiang J J, He J. 2014. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel. Corros. Sci., 84 (3): 103–112.

    Article  Google Scholar 

  • Moradi M, Xiao T, Song Z L. 2015b. Investigation of corrosion inhibitory process of marine Vibrio neocaledonicus sp. bacterium for carbon steel. Corros. Sci., 100: 186–193.

    Article  Google Scholar 

  • Neriagonzález I, Wang E T, Ramírez F, Romero J M, Hernández–Rodríguez C. 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe, 12 (3): 122–133.

    Article  Google Scholar 

  • Nikolaev Y A, Plankunov V K. 2007. Biofilm—“city of microbes” or an analogue of multicellular organisms? Microbiology, 76 (2): 125–138.

    Article  Google Scholar 

  • Paarup M, Friedrich M W, Tindall B J, Finster K. 2006. Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum. Anton. Leeuw., 89 (1): 55–69.

    Article  Google Scholar 

  • Païssé S, Ghiglione J F, Marty F, Abbas B, Gueuné H, Amaya J M S, Muyzer G, Quillet L. 2013. Sulfate–reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Appl. Microbiol. Biot., 97 (16): 7 493–7 504.

    Article  Google Scholar 

  • Palaniappan B, Toleti S R. 2016. Characterization of microfouling and corrosive bacterial community of a firewater distribution system. J. Biosci. Bioeng., 121 (4): 435–441.

    Article  Google Scholar 

  • Parthipan P, Babu T G, Anandkumar B, Rajasekar A. 2017. Biocorrosion and its impact on carbon steel API 5LX by Bacillus subtilis A1 and Bacillus cereus A4 isolated from Indian crude oil reservoir. J. Bio–Tribo–Corros., 3: 32.

    Article  Google Scholar 

  • Pillay C, Lin J. 2013. Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: effects of additional nitrate sources. Int. Biodeter. Biodegr., 83 (9): 158–165.

    Article  Google Scholar 

  • Ponmariappan S, Maruthamuthu S, Palaniappan R. 2004. Inhibition of corrosion of mild steel by staphylococcus sp. Trans. SAEST, 39 (4): 99–108.

    Google Scholar 

  • Prasad S, Manasa P, Buddhi S, Tirunagari P, Begum Z, Rajan S, Shivaji S. 2014. Diversity and bioprospective potential (cold–active enzymes) of cultivable marine bacteria from the subarctic glacial fjord, Kongsfjorden. Curr. Microbiol., 68 (2): 233–238.

    Article  Google Scholar 

  • Qu Q, He Y, Wang L, Xu H T, Li L, Chen Y J, Ding Z T. 2015. Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2. Corros. Sci., 91 (3): 321–329.

    Article  Google Scholar 

  • Rao T S. 2010. Comparative effect of temperature on biofilm formation in natural and modified marine environment. Aquat. Ecol., 44 (2): 463–478.

    Article  Google Scholar 

  • Rath K, Mishra B, Vuppu S. 2012. Bio degrading ability of organo–sulphur compound of a newly isolated microbe Bacillus sp. KS1 from the oil contaminated soil. Arch. Appl. Sci. Res., 4 (1): 465–471.

    Google Scholar 

  • Sánchez–Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A. 2003. Screening and characterization of the protease cp1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain cp76. Extremophiles, 7 (3): 221–228.

    Article  Google Scholar 

  • Selvaraj H, Chandrasekaran K, Murugan R, Sundaram M. 2017. An integrated biological and electrochemical process for recovery of sulfur from an industrial effluent contaminated pond water and its preliminary application in high performance battery. Sep. Purif. Technol., 180: 133–141.

    Article  Google Scholar 

  • Slightom R N, Buchan A. 2009. Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl. Environ. Microbiol., 75 (19): 6 027–6 037.

    Article  Google Scholar 

  • Sun H F, Shi B Y, Lytle DA, Bai Y H, Wang D S. 2014. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system. Environ. Sci. Processes Impacts, 16 (3): 576–585.

    Article  Google Scholar 

  • Vigneron A, Alsop E B, Chambers B, Lomans B P, Head I M, Tsesmetzis N. 2016. Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl. Environ. Microbiol., 82 (8): 2 545–2 554.

    Article  Google Scholar 

  • Wadood H Z, Rajasekar A, Ting Y P, Sabari A N. 2015. Role of Bacillus subtilis and Pseudomonas aeruginosa on corrosion behaviour of stainless steel. Arab. J. Sci. Eng., 40 (7): 1 825–1 836.

    Article  Google Scholar 

  • Wang H B, Hu C, Hu X X, Yang M, Qu J H. 2012. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Res., 46 (4): 1 070–1 078.

    Article  Google Scholar 

  • Wang Y P. 2014. Study on isolation and diversity of culturable anaerobic bacteria in intertidal sediment of Qingdao. Ocean University China, China. (in Chinese)

    Google Scholar 

  • Xu D K, Li Y C, Gu T Y. 2016. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 110: 52–58.

    Article  Google Scholar 

  • Xu D K, Li Y C, Song F M, Gu T Y. 2013. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci., 77 (12): 385–390.

    Article  Google Scholar 

  • Yang Y H, Xiao W L, Chai K, Wu J Y. 2011. Composition of bacteria in corrosion product of carbon steel with different carbon content immersed in seawater for different time. J. Chin. Soc. Corros. Protect., 31 (4): 294–298. (in Chinese with English abstract)

    Google Scholar 

  • Yin Y S, Cheng S, Chen S G, Tian J T, Liu T, Chang X T. 2009. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens: (II) corrosion mechanism. Mater. Sci. Eng.: C, 29 (3): 756–760.

    Article  Google Scholar 

  • Yu Y, Wang J H, Fang S T, Jiang Z Z, Zhou X Q, Xia C H. 2014 Identification of biofouling biofilms bacterium Pseudoalteromonas issachenkonii YT1305–1 and analysis on chemical constitutents of its metabolites. Microbiol. China, 41 (7): 1 278–1 286. (in Chinese with English abstract)

    Google Scholar 

  • Yuan S J, Pehkonen S O. 2007. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Colloid. Surface B, 59 (1): 87–99.

    Article  Google Scholar 

  • Zhang P Y, Xu D K, Li Y C, Yang K, Gu T Y. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 101: 14–21.

    Article  Google Scholar 

  • Zhang T, Fang H H. 2001. Phylogenetic diversity of a srb–rich marine biofilm. Appl. Microbiol. Biot., 57 (3): 437–440.

    Article  Google Scholar 

  • Zhang Y, Pei G S, Chen L, Zhang W W. 2016. Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface. Biofouling, 32 (7): 725–736.

    Article  Google Scholar 

  • Zuo R J. 2007. Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biot., 76 (6): 1 245–1 253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuexi Tang or Jizhou Duan.

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2014CB643304), the National Natural Science Foundation of China (No. 41576080), and the Key Research and Development Program of Shandong Province (No. 2018GHY115003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiao, H., Zhang, W. et al. Analysis of cultivable aerobic bacterial community composition and screening for facultative sulfate-reducing bacteria in marine corrosive steel. J. Ocean. Limnol. 37, 600–614 (2019). https://doi.org/10.1007/s00343-019-7400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7400-1

Keyword

Navigation